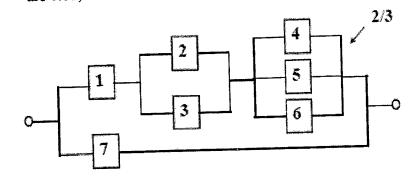
ATT FREEZE ATT FR	(A Gov	vernment Aided Au	Bhavan's ge of Engin atonomous Institute st), Mumbai – 4000	eering	TO SOM	
	, I	End Semester Ex November 2		Date:	21/11/2016	
rogram: M.Te	ch. (Mechanical)	with Machine D	esign	Durat	ion: 4 Hrs	
ourse Code: 1			· · ·	Max.	Marks: 100	
		Enga and Davia	n of Fynariment	s Seme	ster: I	
	ourse: Reliability			-	5101.1	
nstructions: At Question	ttempt any five q	uestions. All que	·····	al marks. Maximum Marks	Jaster f Course Outcome Number	<u>No.</u>
Q.1.						
	hort note on: al Estimation of E onfidence interval	Error	•	05	02	01
situations, experimen assigned to alone (con	ine the effects of researchers select t. Fifteen of the p o each of three gr trol group), with a esent. Each subje	ed 45 people to p people (subjects) oups to perform a good team present ct's mean heart	articipate in an were randomly a stressful task nt, or with their rate during the	05	02	02
task was t	recorded. Test the vel to decide if the	e mean heart rate	differs between			
task was $\alpha = 0.05$ le	recorded. Test the vel to decide if the	e mean heart rate	differs between Std. Dev.			
task was $\alpha = 0.05$ le the groups	recorded. Test the evel to decide if the s.	e mean heart rate	differs between			
task was $\alpha = 0.05$ le	n n 15 15	Mean 82.52 73.48	Std. Dev. 9.24 9.97			
task was $\alpha = 0.05$ let the groups Control	recorded. Test the evel to decide if the s. <u>n</u> 15	e mean heart rate Mean 82.52	Std. Dev. 9.24			·
task was $\alpha = 0.05$ let the groups Control Projects Teams (c) Data c	n 15 15 15 0llected random uring plants for a	Mean 82.52 73.48 91.33 Ily from 5 Group 5 Group	Std. Dev.9.249.978.34eneral Motors	10	01	02
task was $\alpha = 0.05$ le the groups Control Projects Teams (c) Data c manufactu	n 15 15 15 0llected random uring plants for a	e mean heart rate Mean 82.52 73.48 91.33 ly from 5 Generation of	Std. Dev.9.249.978.34eneral Motorsale in 2015 asAnnual Sale	10	01	02
task was $\alpha = 0.05$ le the groups Control Projects Teams (c) Data c manufactu given belo	n 15 15 15 0llected random uring plants for a ow, Number of subunits	e mean heart rate Mean 82.52 73.48 91.33 ly from 5 Graverage annual s Number of car models	Std. Dev. 9.24 9.97 8.34 eneral Motors ale in 2015 as Annual Sale in Dollars	10	01	. 02
task was the groups of the g	n 15 15 15 15 0llected random uring plants for a ow, Number of subunits 12	e mean heart rate Mean 82.52 73.48 91.33 ly from 5 Gr average annual s Number of car models 32	Std. Dev.9.249.978.34eneral Motorsale in 2015 asAnnual Salein Dollars350,000	10	01	02
task was the groups the groups $\begin{bmatrix} Control & \\ Projects & \\ Teams & \\ \hline \hline \\ Control & \\ Projects & \\ \hline \\ \hline \\ Teams & \\ \hline \\ \hline \\ Control & \\ \hline \\ Projects & \\ \hline \\ \hline \\ Teams & \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ Control & \\ \hline \\$	n 15 15 15 15 0llected random uring plants for a ow, Number of subunits 12 14	e mean heart rate Mean 82.52 73.48 91.33 ly from 5 Graverage annual s Number of car models 32 35	Std. Dev.9.249.978.34eneral Motorsale in 2015 asAnnual Salein Dollars350,000399,765	10	01	02
task was ta	n 15 15 15 15 0llected random uring plants for a ow, Number of subunits 12 14 15	Mean82.5273.4891.33Ily from 5 Graverage annual sNumber of car models323545	Std. Dev.9.249.978.34eneral Motorsale in 2015 asAnnual Salein Dollars350,000399,765429,000	10	01	
task was $\alpha = 0.05$ le the groups Control Projects Teams (c) Data c manufactu given belo Plant No. 1 2 3 4	n 15 15 15 15 0llected random uring plants for a ow, Number of subunits 12 14 15 16	Mean82.5273.4891.33Ily from 5 Graverage annual sNumber of car models32354550	Std. Dev. 9.24 9.97 8.34 eneral Motors ale in 2015 as Annual Sale in Dollars 350,000 399,765 429,000 435,000	10	01	. 02
task was $\alpha = 0.05$ le the groups Control Projects Teams (c) Data c manufactu given belo Plant No. 1 2 3 4 5	n 15 15 15 15 0llected random uring plants for a ow, Number of subunits 12 14 15	e mean heart rate Mean 82.52 73.48 91.33 ly from 5 Graverage annual s Number of car models 32 35 45 50 65	Std. Dev. 9.24 9.97 8.34 eneral Motors ale in 2015 as Annual Sale in Dollars 350,000 399,765 429,000 435,000	10	01	02


determination. Also predict the annual sales for a plant having 13 subunits and 49 numbers of car models			
Q.2.	~ -		
(a) What is the purpose of randomization of tests?	05	01	0.
What is the effect of blocking on analysis of results			
(b) The following experiment is interested in comparing the effect four different materials (A, B, C and D) in producing water resistance (y) in car body. A strip, randomly selected from each of material, is cut into four pieces (samples). These pieces are randomly tested for corrosion test. This process is replicated three times producing a Randomized Block (RB) design as given below with corresponding measured moisture resistance of the samples. (Low readings indicate low moisture penetration).	05	02	0.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
(c) Construct a one-half fraction of 2 ⁴⁻¹ fractional factorial	10	02	0
design. Illustrate the procedure of constructing fractional	هي ا		
factorial design using this exercise.			
Q.3.		······································	
 (a) Illustrate the Least Square Method for estimation of parameters (β) used in Response Surface Methodology 	05	01	0
(b) Define the term signal-to-noise (S/N) ratio. How do you set the objective function in robust design?	05	01	0
(c) Taguchi experimental design orthogonal array (L9) is designed for conducting three trials for each experiment, the data below was collected. Compute the S/N ratio for each experiment for the target value (nominal is best) case, create a response chart, main effect plot for S/N ratios and determine the parameters that have the highest and lowest effect on the casting	10	02	0
yield.			

C

8		Ŷ						
• • •	Exp.	Preheat	Casting	Cooling	Flow	Trial	Trial	Trial
	Number	Temperature	width	Rate	Rate	1	2	3
	1	100	2	4	0.1	87.3	82.3	70.7
	2	100	5	6	0.2	74.8	70.7	63.2
	3	100	8	8	0.3	56.5	54.9	45.7
	4	150	2	6	0.3	79.8	78.2	62.3
	5	150	5	8	0.1	77.3	76.5	54.9
	6	150	8	4	0.2	89	87.3	83.2
	7	200	2	. 8	0.2	64.8	62.3	55.7
	8	200	5	4	0.3	99	93.2	87.3
	9	200	8	6	0.1	75.7	74	63.2

Q.4.			05
(a) With a suitable example describe the method of plotting:	05	01	05
i) Frequency Distribution			
ii) Probability Density Function			ه، بعضي ه
iii) Probability Distribution Function			
What type of information may they indicate?			
(b) The foreman of a casting section in a factory finds that on the	05	01	05
average 1 in every 5 casting made is defective. If the section			
makes 8 castings a day what is the probability that exactly 2			
castings will be defective?			
(c) A pumping station has two 20000 liters/hr pumps and is to	10	03	06
(c) A pumping station has two 20000 inters/in pumps and is to			
have one 40000 liters/hr pump installed. Draw up a pumping capacity outage probability table for this system given that			
the unavailabilities (probability of failure) for the 20000 and			
40000 liters/hr pumps are 0.2 and 0.1 respectively. If the			
system requires at least 50000 liters/hr for successful			
operation, what is the probability of system success?			
Q.5.	05	01	05
(a) Write a short note on any two of the followings:			
i) Part/product life testing			
ii) Weibull distribution			
iii) Taguchi loss function	0.5	02	05
(b) A system consists of 5 components in parallel. System	05	03	UD
success requires that at least 3 of these components must	en e	"Mijo	
function. What is the probability of system success if the			
component reliability in 0.9?			

(c) Derive a general expression for the unreliability of the system whose reliability model is shown below. Calculate the system unreliability if the unreliability of component 3 and 5 are 0.01, and for the other components are 0.02.

Q.6.	05	01	07
(a) Illustrate the steps for evaluation of availability using	05	U1	•••
Markov Modeling technique		0.2	06
(b) A system has 3 components in parallel with reliabilities	15	03	00
designated as R ₁ R ₂ and R ₃ . A system requires at least 1			
component to work for system success. Draw the reliability			
network diagram and find an expression for system reliability			
using the following methods:			
(i) conditional probability approach			
(ii) minimal cutsets	·····		
(iii) event tree			
Q.7.	05	01	07
(a) Compare the "fault tree analysis" and "failure mode and			
effect analysis" (FMEA)			07
(b) A telephone exchange contains 10 lines. A line can be busy	05	03	07
or available for calls and all lines act independently. If the			
probability that a line will be busy during the noon period is			
0.8, what is the probability of there being at least three free			
lines during this period? What is the expected number of free			
lines during this period?			
(c) Compare the reliability and MTTF of a 2-component system	10	03	07
each having a failure rate of 0.02 f/hr after a time of 10 hr if			
they are			
(i) parallel redundant(ii) standby redundant with 100% reliable sensing and		n Tanan Mitana	
changeover device.			

,

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

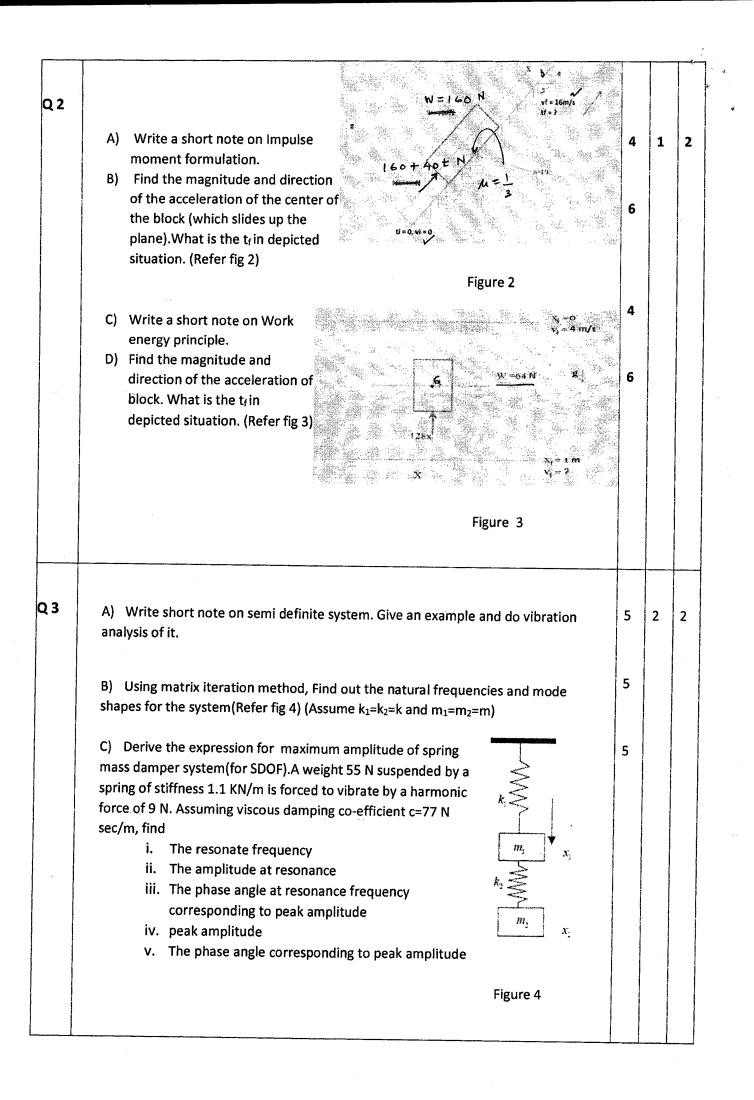
(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058

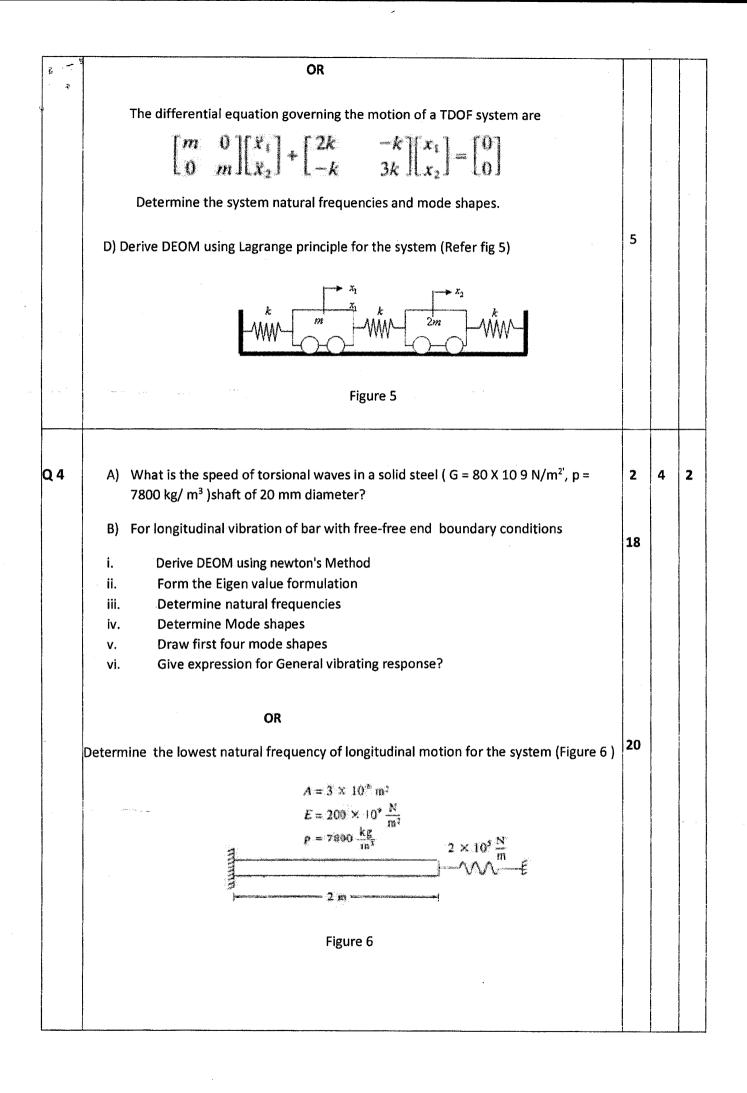
End Sem

Nov 2016

Program:M. TechCourse code:MTMD102Maximum Marks:100Name of the Course:Machine Dynamics and Advanced Vibration

Instructions: Use of scientific calculator is allowed Be specific in your answer Attempt **any five** questions.


Abbreviations: SDOF- Single degree of freedom TDOF-Double degree of freedom MDOF-Multi degree of freedom DEOM-Differential equation of motion MM-Maximum Marks CN-Course Outcome Number. MN-Module Number


Duration: 4 hr Semester: First

Date: 18/11/ 2016

Master file.

Explain the rigid body F=32 N			
Explain the rigid body $F_{=32 \text{ N}}$			
kinematics, specifically derive the expression for velocity and acceleration in terms of the position vector. $\mu=0.25$	6	1	1
Figure 1 Write short note Euler's equations of motions.			
 The block is released from rest and slides to the right. (Refer fig 1) i. Find the acceleration of its centre of mass and location of the normal force. ii. Find the distance travelled by the mass centre in 4 sec. iii. What are the largest applied force and acceleration possible without tipping. 	4		
	the expression for velocity and acceleration in terms of the position vector.	the expression for velocity and acceleration in terms of the position vector.	the expression for velocity and acceleration in terms of the position vector.

~ -						
Q 5	A) Write short note on following Damping models	ĺ				
	i. Viscous Damping					
	ii. Material Damping	5	3	5		
	iii. Friction/Columb's Damping					
	B) Short note on vibration isolator.					
	What is the maximum stiffness of an undamped isolator to provide 81 percent					
	isolation for a 200 kg fan operating at 1000 rpm. If the isolator had a damping	5				
	ratio of 0.1, determine the stiffness value.					
	C) What is viscoelastic material and its significance in Vibration control.					
	 D) Explain following 					
	i. Dynamic Vibration Absorber(DVA)			1		
	ii. Basics concept of of DVA.	2				
	iii. Design Considerations					
		8				
26	A) Derive the equation motion of the system (Refer fig 7). Consider last spring to be	10	4	4		
	nonlinear where the spring force is given by $F_s=k_3x+k_4x^2$ and other spring and					
	damper behavior to be linear.					
	k_{x} k_{z} k_{z} k_{z}					
	$\begin{array}{c} 1 \\ \hline \\$					
	······································					
	Figure 7					
	B) Derive the equation of motion of a pendulum of length l					
	and mass m which is attached to a mass less moving $Y(t)$					
	support (Refer fig 8)			ĺ		
	OR					
		10				
	What is a singular or equilibrium point of non-linear					
	vibration system? With derivation of necessary equilibrium					
	explain the classification points. Draw neat sketches to					
	Illustrate of the equilibrium points.					
	Figure 8					
7	A) Briefly describe two types of frequency measuring mechanical instruments?					
	, and the second s	10 7	3	6		
		· •	1			
	B) Explain signature analysis in the context of experiential study of vibrations?	10				

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058

End Semester Examination November 2016

Date: 23/11/2016

Duration: 4 Hrs

Max. Marks: 100

Semester: I

Program: M.Tech. (Mechanical) with Machine Design

Course Code: MTMD104

Name of the Course: Tribology

Instructions: Attempt any five questions. All questions carry equal marks.

Use of approved PSG Design data book is permitted.

Assume suitable data, if necessary, giving reason.

Master file.

Question	Maximum Marks	Course Outcome Number	Module No.
Q.1.		0.2	01
(a) Write a note on Towers Experiment (test setup, observations and conclusions).	10	02	01
 (b) Explain the following with neat sketches (i) Role of hydro-dynamic lubrication in Journal Bearings (ii) Cavitation zone in hydro-dynamic bearings (iii) Hydro-dynamic pressure profile in radial journal bearing (iv) Mechanism of pressure build-up in a hydrodynamic bearing 	10	01	01
Q.2.			
(a) Distinguish between:	05	02	02
(i) Shear thinning and shear thickening			
(ii) Full and partial journal bearing	05	01	02
(b) Describe following types of hydrostatic bearing with neat sketch (i) porous bearing (ii) multi-pocket hydrostatic	00	UI	
bearing	10	03	02
(c) A journal bearing has the following specifications:	10	03	02
Journal diameter = 100 mm			
Bearing diameter = 100.3 mm Bearing length = 105 mm			
Radial load = 15 kN			
Bearing is lubricated under pressure with inlet oil			
temperature of 44°C			
(Grove at lower point of bearing and oil viscosity = 30 mPa.s)			
Determine oil flow rate and inlet pressure to raise the journal			
0.05 mm for operating under steady state condition.			

Somester: I

23.			03
a) Explain schematically the effect of i) time, ii) load and iii)	05	01	03
temperature on wear rate for dry, boundary lubricated and			
fluid film lubricated case			02
b) Demonstrate the mechanism of elasto-hydrodynamic	05	01	03
lubrication with a suitable example			
(c) A lightly loaded journal bearing has following specifications:	10	03	03
Radial load = 600 N			
Rotational speed = 2000 RPM			
Journal diameter = 40 mm			
Bearing length = 10 mm			
$\beta = 0.029$			
Radial clearance = $20 \ \mu m$			
Oil viscosity at room temperature = 15 mPa.s			
$\rho_{oil} = 860 \text{ kg/m}^3$			
$Cp \text{ of oil} = 1760 \text{ J/kg}^{\circ}C$			
U = 4.19 m/s			
Determine the minimum film thickness, maximum pressure,			
coefficient of friction			
Q.4.			0.4
(a) Describe the situation where liquid lubricants are	05	01	04
undesirable and ineffective over solid lubricants with an			
example	•		
(b) Write a short note on Magnetorheological (MR) fluid	05	01	04
(c) A ball bearing is to operate on the following work cycle of 3	10	02	05
hours consisting of :	-		
Radial load 1400N at 200 rpm for 25% of the time			
Radial load 2000N at 500 rpm for 20% of the time			
Radial load 800N at 400 rpm for 55% of the time			
Expected life of bearing is 10000 hours. Calculate load			
carrying capacity of bearing			
Q.5.			
(a) Suggest suitable roller element bearing for:	05	03	05
(i) High speed			
(ii) High running accuracy		,	
(iii) Pure axial load			
(iv) Pure radial load			
(v) Combined radial and axial load			05
(b) What is preload? Explain it in terms of elastic deformation.	05	01	0.
State the significance of preloading on rolling element			
bearings.			
(c) Select a suitable deep grove ball bearing among following	10	02	0
bearings			
(SKF 6007 C = 12200N, $C_0 = 8500$ N and			
SKF 6207 C = 19600N, $C_0 = 13700N$)			
for following operating conditions:			
Radial load = 1000N,			

~

<u></u>

Ş

/it 3

haft speed = 1 perating life =						
ore diameter :						
onversion fac	tor for equ	uivalent l	ad = 1.3			
F _a /C ₀ F _a /VF	, > e	e				
- X	Y					
.014 0.56	2.30	,19				
.028	1.99	.22				
.056	1.71	.26				
.084	1.55	.28				
.11	¹ 1.45	.3				
.17	1.31	.34				
.28	1.15	.38				
.42	1.04	.42		Mayor and a	1997 - 1997 - 1998 - 19	-
.56	1.00	.44				
) Write a not	e on fricti	on induce	d instability	05	01	06
-						
b) What is	surface	roughr	ess? Explain the relevant	05	02	06
b) What is terminologi	surface es. Disti	roughr nguish A	ess? Explain the relevant verage roughness and Root	05	02	06
b) What is terminologi	surface es. Disti	roughr nguish A	ess? Explain the relevant	05	02	06
b) What is terminologi Mean Squa	surface es. Distin are rough	roughr nguish A ness. W	ess? Explain the relevant verage roughness and Root ich one quantifies the exact	05	02	06
b) What is terminologi Mean Squa behavior of	surface es. Distin are rough surface ro	roughr nguish A ness. Wi	ess? Explain the relevant verage roughness and Root ich one quantifies the exact and Why? Illustrate the role of	05	02	06
b) What is terminologi Mean Squa behavior of surface rou	surface es. Distin are rough surface ro ghness in	roughr nguish A ness. Wi oughness dry and l	ess? Explain the relevant verage roughness and Root ich one quantifies the exact and Why? Illustrate the role of abricated surfaces			06
 b) What is terminologi Mean Squa behavior of surface rou c) Explain the 	surface es. Distin are rough surface ro ghness in friction d	roughr nguish A ness. Wh oughness dry and h lue to def	ess? Explain the relevant verage roughness and Root ich one quantifies the exact and Why? Illustrate the role of ubricated surfaces ormation by considering	05	02	
 b) What is terminologi Mean Squade behavior of surface rous c) Explain the conical and 	surface es. Distin are rough surface ro ghness in friction d	roughr nguish A ness. Wh oughness dry and h lue to def	ess? Explain the relevant verage roughness and Root ich one quantifies the exact and Why? Illustrate the role of ubricated surfaces ormation by considering			
 b) What is terminologi Mean Squa behavior of surface rou c) Explain the conical and Q.7. 	surface es. Distinare rough surface ro ghness in friction d spherical	roughr nguish A ness. Wh oughness dry and h lue to def asperitie	ess? Explain the relevant verage roughness and Root ich one quantifies the exact and Why? Illustrate the role of ibricated surfaces ormation by considering			-
 b) What is terminologi Mean Squa behavior of surface rou c) Explain the conical and Q.7. (a) Explain sch 	surface es. Distin re rough surface ro ghness in friction d spherical	roughr nguish A ness. Wh oughness dry and h lue to def asperitie	ess? Explain the relevant verage roughness and Root ich one quantifies the exact and Why? Illustrate the role of ubricated surfaces ormation by considering	10	01	06
 b) What is terminologi Mean Squa behavior of surface rou c) Explain the conical and Q.7. 	surface es. Distinate surface rough surface ro ghness in friction d spherical nematicall ce	roughr nguish A ness. Wh oughness dry and l lue to def asperitie	ess? Explain the relevant verage roughness and Root ich one quantifies the exact and Why? Illustrate the role of abricated surfaces ormation by considering contamination layers on	10	01	06
 b) What is terminologi Mean Squa behavior of surface rou c) Explain the conical and Q.7. (a) Explain sch metal surface (b) Illustrate rou 	surface es. Distinate surface rough surface ro ghness in friction d spherical hematicall ce olling and	roughr nguish A ness. Wh oughness dry and h lue to def asperitie y surface sliding in	ess? Explain the relevant verage roughness and Root ich one quantifies the exact and Why? Illustrate the role of abricated surfaces ormation by considering contamination layers on	10 05	01	06
 b) What is terminologi Mean Squa behavior of surface rou c) Explain the conical and Q.7. a) Explain sch metal surface b) Illustrate rou 	surface es. Distinate surface rough surface ro ghness in friction d spherical hematicall ce olling and	roughr nguish A ness. Wh oughness dry and h lue to def asperitie y surface sliding in	ess? Explain the relevant verage roughness and Root ich one quantifies the exact and Why? Illustrate the role of ibricated surfaces ormation by considering contamination layers on gears	10 05 05	01 02 02	06
 b) What is terminologi Mean Squa behavior of surface rou c) Explain the conical and Q.7. (a) Explain sch metal surface (b) Illustrate rou (c) Explain the conical and surface 	surface es. Distinate surface rough surface ro ghness in friction d spherical hematicall ce olling and	roughr nguish A ness. Wh oughness dry and h lue to def asperitie y surface sliding in	ess? Explain the relevant verage roughness and Root ich one quantifies the exact and Why? Illustrate the role of ibricated surfaces ormation by considering contamination layers on gears	10 05 05	01 02 02	06
 b) What is terminologi Mean Squa behavior of surface rou c) Explain the conical and Q.7. (a) Explain sch metal surface (b) Illustrate rou (c) Explain the 	surface es. Distinate surface rough surface ro ghness in friction d spherical hematicall ce olling and	roughr nguish A ness. Wh oughness dry and h lue to def asperitie y surface sliding in	ess? Explain the relevant verage roughness and Root ich one quantifies the exact and Why? Illustrate the role of ibricated surfaces ormation by considering contamination layers on gears	10 05 05	01 02 02	06

Ð

ŝ

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

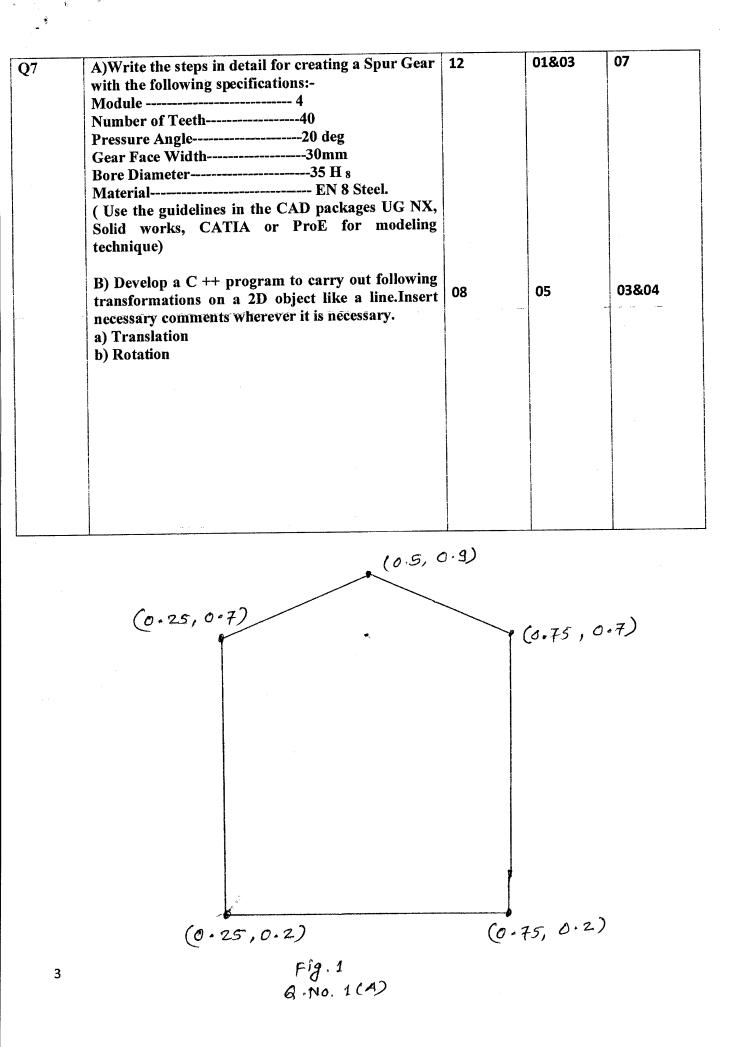
(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058. END SEMESTER RE-EXAMINATION DECEMBER 2016

Q. P. Code: Duration: 4 Hour Program: Course Code :MTMD111 Master file.

Max. Marks: 100

Class: M.Tech(Mechanical) with Machine Design Semester: I Name of the Course: Elective I -Computer Aided design

Instructions:


1

1. Answer any five questions.

2. Assume suitable additional data if necessary and state the same.

Question No		Maximum Marks	Course Outcome	Module No
Q1	 A) Consider the Fig.1.Calculate and sketch what will appear on the screen for each of the following Window and View Port settings. a) SET VIEWPORT (0,1,0,1) SET WINDOW (0,2,0,2) 	10	01&03	03
	b) SET VIEWPORT (0.5,1,0.5,1) SET WINDOW (0,1,0,1)			
· · ·	B) Explain the two methods, namely, vector cross product and vector dot product, to find the vector normal to the plane of the polygon to decide back face removal.	10	01,02 &03	03
Q2	A)Given $B_0 \begin{bmatrix} 1 & 1 \end{bmatrix}$, $B_1 \begin{bmatrix} 2 & 3 \end{bmatrix}$, $B_2 \begin{bmatrix} 4 & 3 \end{bmatrix}$ and $B_3 \begin{bmatrix} 3 & 1 \end{bmatrix}$ the vertices of a Bezier polygon determine the co-ordinates at points, P1(0.2), P2(0.4), P3(0.6) and P4 (0.8).	12	04	04
	B) Vectorize a line to be drawn from (10, 20) to (150, 125) mm on a display which is mapped to approximately (300 * 250 mm). The resolution of the screen is 640 * 480 pixels. Apply DDA Algorithm.	08	01, 03 & 04	03

Q3	A)Generate the parabolic segment for parametric representation in the first quadrant for $1 \le x \le 4$ for the parabola given by :	10	01,03 &04	02&04
	$X = a \Theta^2$, $y = 2a \Theta$ for $a=1$.			
	B)Consider the triangle ABC with position vectors as shown below:	10	01,03 &05	04
	4 1 5 2 4 3			
	First reflect the triangle about the X-axis and then reflect about the line $Y = -X$			
Q4	A)Explain in detail Boundary Representation (B- rep) and Constructive solid Geometry (CSG) schemes to create solid models of physical objects in CAD system.	10	01,03&04	02
	 B) The various design- related tasks which are performed by a modern computer applied design system can be grouped into four functional areas: Geometric Modeling Engineering Analysis Design Review and Evaluation Automated Drafting. 	10	01&04	01
25	Briefly explain each of these four areas.Explain the following(any four):-a) Data Exchange Format (DXF)b) Constraint Driven Modelingc) Artificial Intelligence in Design	(5 each)	02 01 04	02&05 02 05
	 d) Virtual Prototyping e) Object Oriented Programming f) Data Capture Techniques like Contact Inspection Methods and Scanning Methods. 		04 04 03&04 04	06 07 06
Q6	A)List the various hardware components that make up a modern CAD system and briefly explain each.	10	01&04	01
	B)Discuss the application of Concurrent Engineering approach in limited design changes .How does IT(Information Technology) facilitate Concurrent Engineering.	10	01,03&04	01&02

